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INTRODUCTION 

FOR SCORES of years we have gained physical insight into the 
field of fluid mechanics, heat and mass transfer, by casting 
non-dimensional numbers as ratios of characteristic forces. 
characteristic energies, or characteristic times and lengths. 
Such interpretations are both simple and appropriate if we 
deal with problems where two characteristic terms are present 
in one of the conservation equations. For instance, in the 
pure hydrodynamic case when only the inertia and the vis- 
cosity terms appear, the Reynolds number admits the simple 
and appropriate interpretation of being the ratio of the typi- 
cal inertia to viscous force. Equally well, comparison of the 
convected with the conducted energies in the energy equation 
leads to the definition of the Peclet number. On the other 
hand, in the case of forced convection, the Prandtl number 
is introduced through the combined use of both momentum 
and energy equations, and it is thus not possible to interpret 
it in terms of either energy or force ratios; it is commonly 
interpreted as the square root ratio of the momentum and 
thermal boundary layer thicknesses. However, this interpre- 
tation is not universal and fails in the case of natural con- 
vection for low Prandtl numbers where the two boundary 
layers coincide. To illustrate further difficulties of interpre- 
tation, consider the question of the physical meaning of the 
Grashof number. Textbooks and research papers alike often 
give the interpretation that it is the ratio of the buoyant to 
viscous forces (for the dangers of such a physical meaning, 
see the book by Bejan [I]). This is not satisfactory since the 
Grashof number does not involve a velocity to define the 
viscous term. If one introduces artificially a characteristic 
unspecified velocity, then one can correctly state that Gr is 
the ratio of the product of the inertia and buoyancy forces 
divided by the square of the viscous forces. But then what is 
the physical significance of the Rayleigh number that cor- 
rectly describes rates of heat transfer? And what about the 
natural convection case in the limit of low Prandtl numbers 
when the so-called Boussinesq rather than the Rayleigh num- 
ber is the pertinent one? To evoke the physical interpretation 
of the Grashof and Prandtl numbers as given above, and say 
that Ra = Gr*Pr or that Bo = Gr*Pr’ is not satisfactory if 
one wishes to create a physical meaning for these quantities 
to promote direct understanding. 

To make the inconsistency in the interpretation of non- 
dimensional numbers even more pointed, consider the situ- 
ation in which yet another body force is introduced, such as 
the ponderomotive force J x B in the case of magneto-fluid 
mechanics. To be more specific consider the non-dimensional 
combination Lp = M’/Gr’/2, which arises in the problem of 
natural convection in the presence of a magnetic ield. If one 
adopts the conventional physical definition for the square of 
the Hartmann number M (the ratio of ponderomotive to 
viscous force). and the one for the Grashof number as given 
above through the artificial introduction of an unspecified 
velocity, then the interpretation for Ly is the one given in 
the Handbook of Chemistry and Physics [1], namely the ratio 
of the square of the ponderomotive force divided by the 
product of the buoyant and the inertia forces. The weakness 

of this interpretation lies in the fact that there is no charac- 
teristic velocity involved in the Ly grouping that could iden- 
tify the Inertia forces, but what is worse. viscosity is absent, 
which could mcorrectly be implied by its presence in the 
Grashof and Hartmann numbers. Finally, as a further exam- 
ple consider a problem involving a phase change such as 
nucleate boiling in the presence of a magnetic field. A simple 
analysis by Lykoudis [3] has shown that the heat transfer 
coefficient depends on a new dimensionless number that was 
difficult to associate with a simple and unambiguous physical 
meaning, since it emerged as a combination of ther- 
modynamic variables, superheats, transport properties and 
of course the intensity of the magnetic field. 

From the examples cited above it appears that better and 
more direct physical interpretations for non-dimensional 
numbers are desirable. It is proposed in this paper to assign 
to all non-dimensional numbers, as they originate from the 
conservation equations of momentum, heat, mass transfer, 
and Maxwell’s equations, a physical meaning through 
characteristic times such as the ones associated with the 
processes of diffusion (momentum, heat. mass, electricity), 
time measured by a clock for a particle to travel a given 
characteristic distance, or the ‘free fall’ time for a particle to 
fall freely in an atmosphere of a given density, and additional 
times as they will be developed later in the text. It is not that 
characteristic times have not been used by researchers in the 
past, there are plenty of examples such as. for instance. Bejan 
[I] (in particular pp. 163 and 213). but this point of view 
has been used sporadically and not carried through in the 
systematic way proposed in the present paper. When one 
does so, it will be seen that all non-dimensional groupings 
admit simple physical meanings for all geometries and 
flow conditions having the advantage of directness and 
universality. 

DEFINITIONS AND DERIVATIONS 

We first make a list of the order of magnitude of some 
terms that appear in the equations of conservation. 

pU/r cc non-steady inertia force per unit volume (1) 

pL”/L x convective inertia force per unit volume (2) 

ApP:L zz pressure forces per unit volume (3) 

pU’LL x viscous force per unit volume (4) 

gAp x buoyancy force per unit volume (5) 

o! L2 x surface tension force per unit volume (6) 

cr,(iB’ -1 ponderomotive force per unit volume (7) 

pc,UAT, L zc thermal convection per unit volume (8) 

kAT/L’ x thermal conduction per unit volume (9) 

UAp’L r mass convected per unit volume (IO) 

D,Ap L’ x mass diffused per unit volume. (II) 
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Now equate (1) and (2) to define the convective time r, 

r, cc L/U. (12) 

Equate (1) and (5) along with UK L/r to define the ‘free fall 
time 1, 

rr = [L/g(A~/~)l”‘. (13) 

Equate (2) and (3) to find the characteristic time I,, needed 
to empty a vessel of size L under a constant pressure differ- 
ence Ap 

I# cc L&/p)-“*. 

Equate (1) with (6) to define the characteristic surface tension 
time (the time it takes for the inertia forces to overcome the 
surface tension forces) 

r,, cc @L’/u) “2. (15) 

We classify the times I,, lr, r,, and rn as ‘non-dissipative times’. 
It is clear that the words ‘dissipative’ and ‘non-dissipative’ 
constitute an abuse of language, but it helps here to show 
their physical origin. 

Equate (1) with (4). and using (I), equate (8) with (9) 
and (10) with (II), to define the corresponding diffusion 
characteristic times for momentum, heat and mass 

r&f cc L2Jv (16) 

r, x L*/a (17) 

r, oc L*/D,. (18) 

Use now the ratio of the heat capacity per unit volume with 
the heat of vaporization per unit volume to define the Jakob 
number : 

Jo = Jakob number cc pc,AT/p.rl. (19) 

In terms of the Jakob number, modify the heat diffusion time 
to define the ‘Jakob time’ which is the time needed for an 
evaporation front to move a distance L. (To my knowledge 
this is a new definition, but a rather useful one for two-phase 
heat transfer problems, as for instance, is the case of bubble 
growth in a superheated liquid.) 

Let us now consider magneto-fluid mechanical problems. 
Equate (1) with (7) to define the so-called ‘roll-over’ time, 

to indicate the time it takes for a small velocity fluctuation 
to be damped out by the magnetic field B for an electrically 
conducting fluid : 

ts cc p/u,B*. (21) 

From a combination of Ampere’s, Faraday’s, and Ohm’s 
laws, equate the Laplacian of the magnetic field B with the 
diffusion of electric charge through the medium’s electrical 
conductivity a, to find the characteristic time !, it takes for 
B to diffuse the thickness L : 

F, = LZ/(l/I& *a,). (22) 

The times r M, tH, r,,,. I#, f, and r,# originate from dissipative 
processes. We can now recall the definitions of non-dimen- 
sional numbers as they emerge in fluid mechanics, heat and 
mass transfer, and show that they can all be expressed in 
terms of the above characteristic times. We have : 

Re = Reynolds number = UL/v x rM/rc (23) 

Pe = Peclet number = ULj2 cc rH/rc (24) 

Le = Lewis number = UL/D, x 1,/r, (25) 

(Re), = magnetic Reynolds number = a,p,LU cc r,/r, 

(26) 

Fr = Froude number = U- [Lg(Ap/p)]-“* CC rr’rc. (27) 

Note here that in the regular definition of the Fourde number 
we have Ap/p = 1. 

We = Weber number = pCJ’L/u x r,t/rc (28) 

MO = Morton number = gp’/pu’ cc r:, * r&r: (29) 

Pr = Prandtl number = v/z x rHlrw 

SC = Schmidt number = v/D, x t,/ry 

(30) 

(31) 

Pr,,, = magnetic Prandtl number = u,p,v z r./r, (32) 

Gr = Grashof number = g(Ap/p)L’/v’ x (r,/r,)Z (33) 

Bo = Boussinesq number = g(Ap/p)L’jz’ x (rJrr)* 

(34) 

Ra = Rayleigh number = g(Ap/p)L’/zv x (r,, * I,,)/$ 

(35) 

Mu = Marangoni number = (&J/cYT)(AF)L!~~ 

r (rv* r&it: (36) 

Eo = Eotvos or Bond number = [pgL’,‘c] ’ ’ z r,,/r, (37) 

M = Hartmann number = BL(u,/p)’ ’ x (I.~, rs) I* * (38) 

N = magnetic interaction parameter = q&L ‘pU a rc/rB 

(39) 

Ly = Lykoudis number = a,B2[g(Ap/p)/L]-’ z p x rf/rB 

(40) 

M/Re = B(u,p)“‘/pCJx r,/(r,,*r,)’ ‘. (41) 

The non-dimensional number A that was introduced in ref. 
[2] has the following meaning: 

A = magnetic interaction boiling number 

= B’AT(u,lc,?piT,,/pbl’) x r;/r,.tB. (42) 

One could proceed with many more dimensionless numbers, 
some of which exist in the literature and others that do 
not, such as for instance the Mach number, introduced in 
problems where compressibility is important, or numbers 
involving the magnetic pressure as used in plasma physics. 
However, the above collection should suffice to illustrate the 
merits of the suggested definitions. 

DISCUSSION 

Let us now look at the physical meanina of the non- 
dimensional numbers through the character&tic times as 
developed above. The Reynolds number appears now as the 
competition between the time I, it takes a particle to travel 
a physical distance around an object, and the time it takes 
for vorticity to diffuse over the same distance. Analogous 
interpretation can be seen for the Peclet. Lewis and magnetic 
Reynolds numbers as the diffusion of heat, mass and electric 
charge are compared with the time 1,. The Prandtl number 
is the ratio of the two characteristic times for momentum 
and heat diffusion. The Grashof number is simply an 
expression of the relative characteristic times for the diffusion 
of momentum and the free fall time. It is clearly an appro- 
priate measure of when natural convection becomes tur- 
bulent (when ry > rt) and not a measure of heat transfer. 
Also, the answer to the question as to when forced convection 
dominates natural convection is the statement ri > r,, which 
is far more clear and direct compared to the familiar 
inequality Re’ >> Gr. For heat transfer, on the other hand, 
the Rayleigh number does not need to be understood via the 
Grashof and Prandtl numbers. It involves the competition 
of the harmonic mean between the two diffusion times of 
heat and momentum, and the free fall time. The Boussinesq 
time involves only the characteristic times of diffusion of 
heat and free fall as it should, since for the case of media of 
high thermal conductivity the diffusion time for momentum 
transfer is very long ; its meaning is clear and unambiguous 
compared to trying to detect it from the regular definition of 
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go = Gr* Pr’. Note also that the Marangoni number is a 
close cousin of the Rayleigh number as the diffusive com- 
bination (tH- I~)‘/* is compared with the time r,, for the 
Marangoni number, and tf for the Rayleigh number. 

Going to two-phase problems we can immediately write, 
for instance, the criterion for the presence of skirts in bubbles 
as t,, > tM rather than the quivaient one of We > Re. Also, 
more physical insight can be gained by analyxing the com- 
bination Re * MO”’ that appears in inqualities which deter- 
mine the shape of bubbles and bubble drag coefficients, by 
writing out its equivalent form in terms of characteristic 
times as : 

Re * MO ‘/’ a [I:” * t:“/t,]. 

One can see that in this combination the momentum diffusion 
time, prominent in the Morton number, is replaced with the 
convective time 1,. 

Let us now take some examples from magneto-fluid mech- 
anics : the Hartmann and magnetic interaction parameters 
are measures of the momentum diffusion and the convective 
times as they compete with the magnetic roll-over time. On 
the other hand, the combination M/Re, which is a measure 
of the skin friction in laminar MHD duct flow, emerges as 
the ratio of the harmonic mean between the two dissipative 
times tM and ta with the convective time t,. The Ly grouping 
which correlates ratios of heat transfer rates in natural con- 
vection with and without magnetic fields, has the simple 
meaning of the competition between the characteristic free 
fall time and the roll-over time. Again, this is a straight- 
forward physical interpretation which is masked by the cur- 
rent definition (correct in strict algebraic terms) involving 
the Grashof and Hartmann numbers. Finally, note that the 
magnetic interaction boiling parameter A turns out to be the 
ratio of the non-diffusive time r, and the harmonic mean of 
the dissipative times t,. and tg. 

It is worth observing that in all the definitions of the non- 
dimensional numbers given here the dissipative and non- 
dissipative times never seem to mix, but always appear as 

competitors. For instance, in all of the cases cited, whenever 
more than one diffusion mechanism is involved, the ratio of 
the characteristic times appears as a ratio of a non-dissipative 
time, and the product of two diffusion, dissipative times. The 
explanation can be sought by observing that the so-called 
‘dissipative’ times are involved with second derivatives, 
whereas the so-called ‘non-dissipative’ times are involved 
with first order derivatives. 

From the discussion above it is clear that by using charac- 
teristic times to define non-dimensional numbers one avoids 
the difficulty of having to mix quantities of energy, force, 
mass, etc. for their interpretation, a procedure that can lead 
to confusion and often times to erroneous assessment. With 
the help of the conservation and Maxwell’s equations, 
characteristic times can easily be defined that provide a com- 
mon, consistent measure of comparison for all non-dimen- 
sional parameters no matter what their origin is. 

Finally, it needs to be stated that nothing prevents the 
attachment to non-dimensional numbers of other special ad 
hoc meanings as they might be pertinent in problems involv- 
ing various geometries and flow conditions. Here again, 
Bejan [l] @ves a number of good examples of what can be 
done with the correct physical scaling in giving powerful 
order of magnitude answers. The definitions given here can 
stand parallel to them without confusion. 
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